
Stack retention in debuggers for concurrent programs

Iulian Dragos
Typesafe Inc.

iulian.dragos@typesafe.com

ABSTRACT
New abstractions for concurrency make writing programs
easier by moving away from threads and locks, but debug-
ging such programs becomes harder. The call-stack, an
essential tool in understanding why and how control flow
reached a certain point in the program, loses meaning when
inspected in traditional debuggers. Futures and actors are
executed on arbitrary threads from a thread-pool, and the
call-stack of interest is at the creation point of futures or
message sends. This paper builds on top of traditional de-
buggers and shows how such call stacks can be collected
efficiently and presented inside a debug session. This small
addition can readily be implemented in debuggers for the
Java Virtual Machine.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids; D.1.3 [Programming Techniques]: Con-
current Programming; D.3.4 [Processors]: Debuggers

General Terms
Debugging, Concurrency

Keywords
Debugging, Futures, Actors

1. INTRODUCTION
Multi-core processors have become the norm. In order to
take advantage of the new hardware, programmers are mov-
ing towards concurrent programs. In a concurrent program
different parts of the program are executed in different log-
ical threads, and the programmer has to ensure the cor-
rect coordination and communication between the different
parts. This adds a new dimension to the already complex
task of writing correct software.

Beside the traditional abstractions for concurrent program-
ming, threads and locks, different paradigms are gaining

Scala Workshop ’13 Montpellier, France

traction. Futures [3], actors[5] and parallel collections are
part of the standard library of Scala. Among them, futures
seem to be the most popular, being present in the .NET,
Java and C++ standard library.

A future (sometimes called a promise) is a proxy for a value
that is not yet computed, and whose computation is execut-
ing in a different thread. A program can block on a future,
waiting for it to be completed, or it can compose futures by
pipelining the results when they become available. Futures
are close to a sequential view of the world, making it easy
for programmers to transition to the new concurrent world.

val fTweets = future {
getAllTweets(user)

}

// also a future
val nrOfTweets = fTweets.map(ts => ts.size)

In this example both values are futures and the program
does not block waiting for all tweets to be retrieved. The
last line shows an example of pipelining, where the size of the
tweets collection is retrieved after the first future completed.
We could find this number by waiting for nrOfTweets, or even
better, by composing it with another future:

nrOfTweets onSuccess { println }

While concurrent programs can better utilize recent hard-
ware, they bring about new types of errors: concurrency
bugs are hard to find and fix: they are usually hard to repro-
duce (non-deterministic), and debugging tools may influence
the program under test (the probe effect). Often, program-
mers simply rely on println-debugging, or the more evolved
but similar in spirit trace-based debuggers.

Debugging is essentially detective work, trying to work from
(unexpected) effects back to the causes, until the fault is
identified and corrected. One of the most common ques-
tions to ask in a debugging session is why: why do we ob-
serve a certain value here, or why the program reached this
point. An immensely useful aid in this search is the call-
stack, a record of all the methods that have been entered
before reaching this point, together with their context (pro-
gram point and local variable information). Using this chain
of calls, the programmer can go “backwards” and identify
broken assumption, set a new breakpoint, and start again.
Call-stacks are a basic feature, found in virtually any de-



bugger in use today.

Concurrent programs have multiple threads of execution,
and as such there are several call-stacks of interest. More-
over, futures encourage a programming style with many
small, short-lived concurrent computations, each one hav-
ing its own call-stack. When the debugger stops at a break-
point inside a future, the call-stack on that particular thread
is not very informative. To answer why execution reached
that point, the programmer needs the call-stack at the point
where the future was created. In our previous example, the
call-stack inside the first future would be empty: it would
tell us nothing about how the control flow reached that
point.

In this paper we set to help programmers fix their concur-
rent programs by offering more information in a traditional
debugger. Our contributions are:

• Identify a common pattern of concurrent programs,
using short-lived computations that execute on a dif-
ferent threads (Section 2).

• Propose a simple solution that can enhance existing
debuggers today (Section 3).

2. DEBUGGING CONCURRENT PROGRAMS
Debuggers can be classified as event-based (or monitoring) or
breakpoint-based (or live)[4]. Log-based debuggers add trace
messages during execution, and may allow some form of re-
play of events, or simply browsing the event log. Breakpoint-
based debuggers launch the program in a special debug mode,
and allow the programmer to install breakpoints, step through
the code, inspect the call-stack and local variables while the
program is running. Log-based debuggers are appealing be-
cause they usually incur a low overhead, they don’t require
a special running mode and are not subject to the probe
effect[4]. Moreover, they can scale to distributed systems,
where parts of the program run on different machines. Given
that many concurrency bugs are hard to reproduce, a log-
based debugger is sometimes the only way to attempt a fix.

Breakpoint-based debuggers allow for a much more inti-
mate interaction with the faulty program: a programmer
can quickly iterate between a faulty run, an attempted fix,
more stepping and inspection, until the ultimate cause for
faulty behaviour is identified and fixed. Breakpoint-based
debuggers are the de-facto standard in sequential program
debugging, and if a bug is reproducible in such a debugger
it is usually the most convenient way to fix it. Our work
builds on top of familiar breakpoint-based debuggers.

Futures are not the only concurrency abstraction that obfus-
cate the call-stack. Actors[5] are lightweight processes that
communicate through message passing. Message sends are
asynchronous, and messages are processed sequentially by
a given actor. JVM-based implementations, such as Akka,
use a shared thread-pool for executing actors, meaning that
each message might be processed in a different thread. Just
as for a future, the call-stack when processing a message
tells nothing about why the control flow reached that point.

Imagine debugging actor a1 and trying to understand why

// a1
var count = 0
def receive = {
case Start(a) => a ! Ping()
case Pong() =>
if (count < 0) a ! PoisonPill
else a ! Ping()

}

// a2
def receive = {
case Ping() => sender ! Pong()
case PoisonPill => // why?

}

Figure 1: An example of actors

the PoisonPill message was received. The first step is to set
a breakpoint on the line where the PoisonPill is received
and try to work backwards from there. However, the call
stack tells us nothing about how the control has reached
that point. What we need is a way to go back and inspect
the call stack and context at the point where the message
was sent, inside a1. In a simple example like this one this
may seem trivial, but in a large system with tens or hundreds
of actors it’s not straight-forward to identify the actor that
sent the message. Moreover, the who is only one side of the
story: the why (the current state when the wrong message
was sent) is still needed for making progress.

Once we identified the originating location of the faulty mes-
sage, the next step in a traditional debugger is to set a new
breakpoint and resume execution, hoping we can trigger the
faulty execution again. However, this has two serious draw-
backs:

• The breakpoint may be hit a large number of times,
but only a tiny fraction of them trigger the faulty exe-
cution (for instance, the count variable is non-negative
most of the times)

• The bug might be time-dependent, making it very hard
to reproduce it at will

The first issue is somewhat alleviated by conditional break-
points and new approaches such as query-point debugging[7].
However, both approaches assume the bug can be repro-
duced easily, which is not necessarily the case in a concur-
rent program.

This is a similar problem to the one we’ve seen regarding
futures: the chain linking a point in the program to possible
causes is broken: the call-stack is non-informative.

Concurrent programs are here to stay, and high-level ab-
stractions such as actors and futures are becoming more and
more common. Moreover, new abstractions are built on top
of futures, such as iteratees[6], and at least one web applica-
tion in wide-spread use has adopted them[2]. As concurrent
programming becomes more convenient, it’s essential that
maintaining concurrent programming keeps up. Debugging
is an integral part of software development and maintenance,
and new tools and techniques are required.



3. AUTOMATIC STACK RETENTION
Based on the observation that the call-stack (and individ-
ual stack frames) contains valuable information, we propose
to automatically stop the program at interesting locations,
save the call-stack and all the individual stack frame infor-
mation (such as local variable values), and resume. When
the programmer reaches a user-defined breakpoint, if any
of the collected stack frames is relevant, the debugger will
present it to the user.

The first question we need to answer is “What are the inter-
esting points?”. Second, we need to decide how much data
to save, and when to drop it. A continuously running pro-
gram, such as a web server, may never terminate, generating
an endless stream of interesting call stacks.

3.1 What are interesting points?
We already mentioned a few interesting points along the
way:

• future creation.

• Actor message send.

In addition to the above, we should also collect stack frames
for future composition methods (map, onSuccess, etc.) and
the fold in interatees. However, it’s usually hard to give an
exhaustive list of interesting points, and a debugger could
allow user-defined collection points.

3.2 Pruning the data
If the debugger was continuously collecting data about all
message sends and future creation, it would quickly run out
of resources. We need a way to collect only useful data.
Our approach builds on top of breakpoint-based debuggers,
and assumes a traditional workflow: the programmer starts
with a breakpoint and a faulty program state, and works
his way backwards to the causes. A breakpoint gives us
enough information to filter out unnecessary states, provided
we can derive a few elements of static information about the
breakpoint location.

The collection of additional call-stacks happens before a tra-
ditional breakpoint is hit, meaning that no runtime infor-
mation at the breakpoint location can be used to decide
whether a call-stack is interesting or not. We have to rely
on static type information at the program location where a
breakpoint is set.

In our work we assume the programming language to be
Scala, and the runtime to be the JVM, but the approach can
be extended to other statically-typed languages and plat-
forms.

Starting with a breakpoint b, we distinguish the kind of in-
formation we retrieve for:

• Future creation: we retrieve the static type of the en-
closing type and method name of b. When a future is
created, we collect it only if the call-stack contains the
said class and method name.

• Message send: we retrieve the most precise type of the
message that is being processed at b. When a message
is sent, we collect it only if the message being sent is
a subtype of the message of interest.

Even with the above, there may still be a large number
of stack frames accumulating over time. We can further
trim the amount of data we collect by removing unneces-
sary frames. When a future is completed, it means there is
no more computation that can occur, so there is no point
in holding on to old call stacks. A debugger can easily re-
move such call stacks by installing a breakpoint on future
completion methods.

Actor messages have a large life-span, and there are no clear
points in the program where they can be collected. A mes-
sage is simply an object living on the heap, and can be sent
multiple times. The only reliable way to evict a call stack
tied to a message is when that message is garbage-collected
by the debugged VM. The debugger can do a “mark and
sweep” pass periodically, removing any call-stacks associ-
ated to messages that have been garbage collected in the
target VM.

4. RELATED WORK
There is a large body of research in debugging concurrent
programs, but our work is closest to approaches that target
message-passing systems in breakpoint-based debuggers.

REME-D[1] is probably the closest to our work, and a very
inspiring approach. REME-D is a message-oriented debug-
ger for ambient-oriented applications that combines event-
based and breakpoint-based debugging. AmbientTalk is based
on asynchronous message-passing, each message being atom-
ically processed in a turn. REME-D allows setting break-
points between turns, respecting the atomicity and minimiz-
ing the probe effect. When an actor is paused its state can
be inspected, and the programmer can query messages that
were received during that turn, browsing a causal chain of
messages. Our approach is similar, but we allow inspecting
the internal state at the point where a message was sent, as
opposed to only showing the message.

Query-point debugging[7] augments traditional debuggers
with query-points such as lastChange. Programmers can use
such queries to find out the last change to a variable, or
the last condition that caused a certain branch to be taken.
A query-point starts from a traditional breakpoint, and the
debugger derives a number of additional breakpoints based
on the particular query-point definition. These additional
breakpoints are used to collect data upon re-execution, but
the program is not paused until execution reaches the ini-
tial breakpoint again. At this point additional information,
such as the last place a variable was changed, is presented
to the user. Our approach is similar by automatically col-
lecting execution data (the call stack), but we do not re-
quire re-execution (and implicitly, reproducibility). On the
downside, our approach is less flexible as it only collects
call-stacks.

5. CONCLUSIONS AND FUTURE WORK



We have described a common problem in debugging concur-
rent programs using futures and actors, and showed a simple
improvement in traditional debuggers that can greatly sim-
plify the task of debugging such programs.

We have built a proof-of-concept tool on top the Scala de-
bugger in Eclipse, based on the Java Debugger Interface[8],
but to really asses the usefulness of this approach we need
to fully integrate it in a graphical IDE.

Beside usability, another important factor is overhead. A
full implementation will show if the approach is usable on
large or long-running projects. We plan to takle both points
in the coming months.

6. REFERENCES
[1] Boix, E. G., Cutsem, T. V., Noguera, C.,

Meuter, W. D., and Hondt, T. D. REME-D : a
Reflective Epidemic Message-Oriented Debugger for
Ambient-Oriented Applications.

[2] Drobi, S. Play2: A new era of web application
development. Internet Computing, IEEE 16, 4 (2012),
89–94.

[3] Friedman, D. P., and Wise, D. S. The impact of
applicative programming on multiprocessing. Indiana
University, Computer Science Department, 1976.

[4] Helmbold, D. P., and McDowell, C. E. Debugging
Concurrent Programs. ACM Computing Surveys 21, 4
(1989), 593–622.

[5] Hewitt, C., Bishop, P., and Steiger, R. A
universal modular actor formalism for artificial
intelligence. In Proceedings of the 3rd international
joint conference on Artificial intelligence (San
Francisco, CA, USA, 1973), IJCAI’73, Morgan
Kaufmann Publishers Inc., pp. 235–245.

[6] Kiselyov, O. Iteratee io: safe, practical, declarative
input processing, 2008.

[7] Mirghasemi, S. Query-point debugging. In Proceedings
of the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and
applications (2009), ACM, pp. 763–764.

[8] Oracle. Java platform debugger architecture (jpda).
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/.


